
1

Development Standards & Practices Used
This system will use the Zigbee wireless communication protocol for

communication between the smart lights and the Zigbee controller.

Summary of Requirements

➢ Lights must be able to operate continuously for 8 hours.

➢ Lights must be able to change to at least 4 different colors.

➢ Lights must operate wirelessly while being controlled from a host

computer connected to the PowerCyberLab simulation.

➢ Latency between a relay status change and light status update must be less

than one second.

➢ Light enclosures must be entirely self-contained.

➢ Software interface between the user and the light system must be easy to

use and understand.

Applicable Courses from Iowa State University Curriculum
● CPRE 281 & 288 & 430 & 450 & 489

● COM S 309 & 311

● EE 201 & 230

New Skills/Knowledge acquired that was not taught in courses
● PCB design is by far the most important skill we are to acquire outside of

class.

● Embedded IoT communication protocol (i.e Zigbee) usage is also another

skill we are to learn

2

Table of Contents
1 Introduction 5

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 5

1.4 Requirements 6

1.5 Intended Users and Uses 7

1.6 Assumptions and Limitations 7

1.7 Expected End Product and Deliverables 7

Early Project Plan 7

2.1 Task Decomposition 7

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 9

2.4 Project Timeline/Schedule. 11

2.5 Project Tracking Procedures 12

2.6 Personnel Effort Requirements 13

2.7 Other Resource Requirements 13

2.8 Financial Requirements 14

3 Design 14

3.1 Previous Work And Literature 14

3.2 Design Thinking 15

3.3 Proposed Design 16

3.4 Technology Considerations 20

3.5 Design Analysis 21

3.6 Development Process 21

3.7 Design Plan 21

4 Testing 22

4.1 Unit Testing 22

3

4.1.1 Smart Light Modules 22

4.1.2 Coordinator Module 23

4.2 Interface Testing 23

4.3 Overall System Testing 24

4.4 Acceptance Testing 24

4.5 Results 24

5 Implementation 24

6 Closing Material 25

6.1 Conclusion 25

6.2 References 26

6.3 Appendices 26

List of figures/tables/symbols/definitions

Table 1: list of requirements 6

Figure 1: System diagram 8

Figure 2: Gantt chart timeline of Spring semester 11

Figure 3: Gantt chart timeline of Fall semester 12

Table 2: Group member roles and expected efforts 13

Figure 4: Previous team’s light module 15

Table 3: Wireless communication protocol comparisons 15

Figure 5: System diagram of IoT devices and host machine 16

Figure 6: coordinator 17

Figure 7: Ws2812b RGB Light module 18

Figure 8: circuit diagram 18

Figure 9: charging circuit diagram 19

Figure 10: Graphical User Interface diagram 20

Figure 11: Agile development process 21

Figure 12: embedded hardware connectivity 23

Figure 13: Software flow diagram 25

4

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to express our sincere gratitude to Dr. Gelli Ravikumar as our advisor and Dr.
Govindarasu Manimaran as our client and secondary advisor. They both provided invaluable
guidance, feedback, and resources to ensure the successful completion of this project.

1.2 PROBLEM AND PROJECT STATEMENT

- Problem Statement

Currently, when running power grid simulations in the PowerCyberLab in Coover Hall, the status of
relays within the simulated power grid is shown by twelve lights mounted on the hardware running
the simulations. In the past, when doing outreach demonstrations or presentations, there would be
a livestream of the lights via a video camera in the lab. Though this worked, it is hard for viewers to
visualize the simulated power grid and the status of the relays when the status lights are fixed to the
hardware, rather than being arrayed over a map of the simulated power grid.

- Solution Approach

Our goal is to provide a way to more easily demonstrate the power grid simulations in outreach
presentations. We would like to use wireless, magnetic lights in an internet of things environment
such that the simulated power grid can be projected onto a surface and our lights can be placed
where the relays are located in the grid, providing a better visual aid for the demonstrations.

The deliverables for this project are a wireless, magnetically mountable LED light, a Zigbee
coordinator that controls the lights, and software that configures the lights to fit the current
simulation and transmits the relay statuses to the lights to update the demonstration in real time.

The Light display system needs to have enough nodes to fit the simulations possible within the
PowerCyber lab, as such this network scheme for the IOT lights needs to be highly scalable. Each
node will be able to be configured to represent individual relays in the PowerCyber Lab

1.3 OPERATIONAL ENVIRONMENT

Our wireless light system will be used in indoor presentation venues, such as classrooms, lecture
halls, or electronics labs. Our system must have access to the internet so that it can communicate
with a server on campus that serves as the intermediary between the light system and the power
grid simulation in Coover hall.

5

1.4 REQUIREMENTS

Previous team’s requirements Our team’s requirements

Functional Requirements

➢ Accept input from 100 relays.
➢ Output to 100 IOT lights.
➢ Capability to map relay inputs to light

outputs via UI.
➢ IOT lights should be magnetically

mountable.
➢ IOT lights should be able to operate

continuously for 8 hours.
➢ IOT lights should come in at least 4

different colors.
➢ IOT lights must be operated wirelessly.
➢ System should be capable of charging at

least 8 lights at once.

Functional Requirements:

➢ Host PC communicates with PowerCyber
Lab Simulation.

➢ Hardware Coordinator communicates with
the host PC.

➢ IOT Light devices communicate with the
Hardware Coordinator.

➢ Light devices are configured on the host PC
to represent relays or nodes in a simulation.

➢ Light device shows the state of a relay or
node in a simulation using an RGB LED.

➢ Light devices are battery powered, with a
battery life of eight hours or more.

➢ Light devices must be operable while
charging.

➢ Light devices must be operated on a scalable
network topology.

➢ Light devices are able to send integer data to
the host PC to trigger an attack on their
respective relay.

Non-Functional Requirements

➢ System should be easy to move through
standard door frames.

➢ Magnetic mounting board should not
obscure any image projected onto it.

➢ Light status should update in less than a
second when the corresponding relay is
updated.

➢ Relay interface components should be easy
to connect.

➢ IOT lights should be similar in size to
existing solution(s).

Non Functional Requirements

➢ Light enclosure is aesthetically pleasing and
relatively small.

➢ Light enclosure must be entirely
self-contained.

➢ All system components together must be
portable enough to fit through doors.

➢ Access to white board or magnetic board as a
mounting surface

➢ Mounting surface should not obscure any
image projected upon it.

➢ Light devices update to reflect changes in the
simulation in less than one second .

➢ Light devices must be magnetically
mountable.

➢ Relay interface components must be easy to
connect.

➢ Software interface between the user and the
light system must be easy to use and
understand.

(Table 1)

6

1.5 INTENDED USERS AND USES

This system is intended for use by members of the PowerCyber lab at Iowa State University to
visually represent the status of relays in power grid simulations, though the system could be easily
adapted to visually represent of the status of nodes in any graph-type system, such as city streets,
wireless networks, or supply chains.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

➢ Users can read and understand english.
➢ Users have their own computer(s) that can run our software.
➢ Users are in an environment with an internet connection.
➢ If outside of the Iowa State University campus, users will have access to the Iowa State

University VPN.
➢ Users have access to electricity when needing to charge the wireless lights.
➢ The system will be used indoors and will not be exposed to the elements.
➢ The system will be kept dry at all times.
➢ The colors for the following statuses will be: blue for functional, yellow for <intermediate>,

and red for non-functional or non-responsive.

Limitations:

➢ System is capable of two way communication.
➢ System must be chargeable and usable at the same time
➢ System in its entirety must fit through a standard door.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The primary deliverables for this project are the wireless LED lights, the software that runs on the
user’s computer which is used to configure the system, and the Zigbee coordinator that acts as the
intermediary between the software and the wireless lights. We will also include a way to charge
multiple lights at the same time, in the form of a charger hub.

2 Early Project Plan

2.1 TASK DECOMPOSITION

The technical parts will be divided into two parts: hardware and software. Hardware components
are PCB board design, power charger system, and circuits design. The software components are GUI
design, IoT network protocols, and software control units. Both hardware and software are
subjective to update if there is a more efficient or useful case to come up.

The plan and design phase is divided into three parts. Because our project is adopted from the
senior design team 19-16, our first part of the senior design is to understand the previous design and
implementation. Once we comprehend the previous team’s accomplishments, our second task is to

7

iterate our own design upon the previous or even rebuild it more efficiently, securely, and better in
performance. Lastly, after we finalize our prototype implementation plan for the design, we will
need approval from both the client and advisor. This will require the team to revise our design and
ensure it meets our expected standards.

Each phase will have deeper tasks intertwined within themselves.

(Figure 1: System diagram)

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

In general, we have decided there are three levels of risks we may have in the way of completing the
project. Critical level risk means a red flag, all members and the advisor/client should be notified at
the first moment. An immediate meeting between the team and the advisor need be scheduled as
soon as possible to discuss mitigation strategy. Moderate level risk means a warning sign, all group
members should schedule a meeting to discuss the issue and give a mitigation plan for the risk.
Depending on how the relativity of the issue and flexibility of the advisor, the advisor may not need
to join the meeting. Small fix means some level of attention is needed. This isn’t an urgent issue or
something off the track. Team members can help each other on this level of risk, able to resolve the
risk within the team, and no need to raise the advisor’s attention. Below are some examples of each
level of risk.

- Critical: Project/Mission fail due to design issue, Milestone overdue, final deliverable
overdue, financial resources shortage, personnel out of duty or injury, and a new pandemic.

- Moderate: Weekly plan off track, significant technical issue.
- Small fix: Excused absence of weekly meeting etc.

8

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones

To guarantee that our team’s project satisfies all requirements, we keep track of our progress against
the schedule, keep the advisor and client updated on progress, and revise and reflect our work.
Since the spring 2021 is focused on the design and plan of the project.

1. Project Research
1.1. Review the previous team’s documents. (Design Docs and report, Presentation, and

virtual tour of PowerCyber Lab by the advisor)
1.2. Research alternative technologies. (Network Protocols: LoRa, ZWave, etc)
1.3. Brainstorm possible changes and/or upgrades to the previous team’s work.

2. Develop a project timeline
2.1. Add due dates for deliverable documents for the first semester.
2.2. Add tentative dates for development during the second semester.
2.3. Build Gantt chart for scheduling and project management.

3. Design hardware and software model
3.1. Design hardware, such as the PCB of the light devices.

3.1.1. Simulate power grid attacks on IoT light devices.
3.1.2. Better Battery life or/and faster charging.

3.2. Design an application with a GUI to configure the IoT light devices
3.2.1. Create an easy-to-navigate interface for User.
3.2.2. Interact the IoT light via GUI and user side applications.
3.2.3. Show the visibility of system status.

3.3. Design embedded software for IoT light devices.
3.3.1. Better scalability and fault tolerance.

4. Develop software and hardware components
4.1. Develop the physical IoT light devices.
4.2. Develop the application to configure light devices.
4.3. Develop embedded software for the light devices.

5. Testing
5.1. Test hardware devices

5.1.1. Xbee coordinators and secondary nodes are functional. All IoT smart lights
have correct output from PowerCyber Lab’s simulation and two-way
communication is set up successfully. Charging circuits and updated
batteries can extend the work life of the IoT smart lights.

5.2. Test software
5.2.1. GUI deployed successfully and can interrupt with the IoT smart lights. User

side application can handle communication and files correctly.
5.3. Test system interoperability

5.3.1. Test the whole system to ensure all functionalities are running smoothly.

In order for this project to be successful, we are aiming for a hardware proof of concept prototype by
the end of the semester. This will be done using the components we intend to use in the final
project, but performed on breadboards such that we can work out hardware and software issues
before fabricating a pcb. Because of the lead time involved with PCB printing and prototyping,

9

aiming for a functional prototype before the end of the semester gives the team more time to
identify potential problems in the development process.

Metrics

Due to the limitation of time and the COVID-19, the team wasn’t able to play with the existing
software and hardware by the time of this first version of the design document. Numeric
specification of metrics and evaluation criteria may be added in the next version of this document.
The metrics are measured in four main aspects: power, GUI, and PCB board. Most metrics are
integrated with the milestone above. Here is the list of metrics with quantity below.

Power:

1. Easier charging, meaning that the end user wouldn’t have to do as much to charge
the devices

2. Battery life, meaning that with maximum power draw for the devices would still
fall within the required 8 hours of usage.

GUI

1. UI/UX easy to use and make significant updates.

2. More interactive and better visibility.

PCB Board

1. Efficiency
2. Newer and more compacted design

10

2.4 PROJECT TIMELINE/SCHEDULE.

(Figure 2: Gantt chart timeline of Spring semester/ design phase)

The Gantt chart above shows the timeline we plan to follow for this project. This chart identifies all
the designing, building and testing/revising that need to be done for the project. The chart
demonstrates how the system planning will happen as we plan in this first version of the design
document.

This is because the timeline is designed with teamwork in mind. The tasks are separated, so that
one or two people can complete the tasks reasonably within a given time frame, dedicating 5 or
more hours a week. This seems to be the most effective way to break down tasks, because it would
be unfair if a task or series of tasks requires more hours of investment per week than other tasks.

11

The following Gantt chart shows the Fall schedule of our senior project. Implementation is divided
into two parts: hardware and software. After each part is implemented as expected, we will integrate
both sides and start to test them. Final deliverable will be sent to our client by the end of the fall
semester.

(Figure 3: Gantt chart timeline of the Fall semester/implementation phase)

2.5 PROJECT TRACKING PROCEDURES

To track our team’s progress, one helpful tool we utilize is the Trello board. We have our all team
members and the advisor added to the Trello board. In the Trello board, we set up sections such as
development modules, To Do list, Done list, meeting notes, resources, and archives. Each section
keeps track of one aspect of the project. Once we move to the implementation phase, we will add a
specific task section to track the progress. Overall, by using the Trello board, it minimizes
miscommunication around the project with simple tools to organize tasks and track progress.

Github will be set up and configured to store the software coding. The Github issues and milestone
is also a good tool to track our software development progress.

Another tool we utilize is discord. Discord is mainly for our day-to-day communication tool. We can
easily set up text and voice channels. This can supplement the Trello board because the Trello board
doesn’t support real time communication. Any notification and risk happened, team members can
set out a text in the discord channel and other team members can be notified immediately. This
helps all group members stay tuned.

12

2.6 PERSONNEL EFFORT REQUIREMENTS

Group Member (first name) Technical Role Efforts in term of hours per
week

Hamza Hardware Developer
1. PCB board design
2. Charging circuits

● 2 hours team meeting,
twice a week.(The
frequency and length
of meetings may
increase when project
load increases.

● 1 hour meeting with
our client and advisor

● 5 hours of effort in
design, plan, and
develop the IoT smart
light project. (The
load may be lighter in
the first week or
heavier when we face
some technical issue.)

William Hardware Developer
1. Hardware Prototyping
2. Charging circuitry

prototyping
3. Embedded software

Xinlei Software Developer
1. Web-based GUI
2. Python application on

user side

Nathan Software Developer
1. Web-based GUI
2. Python application on

user side

(Table 2: Group member roles and expected efforts)

2.7 OTHER RESOURCE REQUIREMENTS

As far as we have decided in our project, there isn’t any other resource requirement needed other
than purchase additional hardware parts or software license. Although we may add items once we
start implementing the project, most parts can be collected from the previous team and existing
resources of PowerCyberLab.

13

2.8 FINANCIAL REQUIREMENTS

From the project proposal, there is a financial budget for this project. If we find we need any more
resources to implement the project, we will propose it to our advisor and client and revise this
section. The department/board will decide whether we have any financial resources.

Item Quantity Price per Item Total cost

XBee s2c prog. module 101 $29.00 $2,929.00

50x WS2812B LED 2 $25.00 $50.00

Li-Polymer 803860 Battery 100 $12.50 $1250.00

Miscellaneous costs - - $200

Total projected cost: $4,429.00

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Our project is an enhancement on previous team work (https://sddec19-16.sd.ece.iastate.edu). Our
purpose is making the design more usable by adding more features and enhancing communication
protocol and battery time. The previous team was able to set up a one way communication using
Zigbee protocol and Xbee chips. They designed the PCB and the housing of the Smart light and was
successfully mountable on a white board using magnets.

The current product’s battery can only last for 8 hours. Another large drawback for the hardware is
it doesn’t fit well inside the enclosure, which gets in the way of when a user needs to charge the
device. The device has a physical switch that needs to be toggled to switch from charge and
discharge modes, making usability quite difficult. The device also only has one RGB light for
presenting data, with very little variance in color selection. One final issue is the lack of user input.
Users are unable to interact with the active simulation represented with the lights, which calls for
two way communication back to the simulation. This is not to understate the fact that the previous
team successfully created a device which could functionally represent the state of the simulation,
rather to outline some potential targets our team is looking for improvement on the project.

14

https://sddec19-16.sd.ece.iastate.edu

(Figure 4: Previous team’s light module)

3.2 DESIGN THINKING

Design is currently using the Zigbee communication protocol for simulating processes running in
different locations. In our design thinking, group members suggested using different protocols, i.e
LoRa and Z-Wave. Another proposed idea was using bluetooth instead of IoT. We found ZigBee
however to be the best protocol to be used as it consumes the least amount of energy and allows a
wider range of devices to be connected to and communicate with.

(Table 3: Wireless communication protocol comparisons)

Our team also came up with the idea of using smart batteries that have an inside charging circuit.
Another approach was designing our own designing circuit and using another battery with more
capacity. The team decided to go with ther second option; one of the limitations of our project is
size, and therefore we will be using a small battery and reorganize our components on the PCB in
order to charge our battery. Especially in the context where smart lights are transmitting
information rather than just receiving information power usage can be a lot higher than in the
previous cases, as such power consumption must be considered more than in the previous context.

15

3.3 PROPOSED DESIGN

When approaching this project, we divided our requirements into two categories, the core
requirements of which we’re aiming for, and the non-functional requirements of which we must
satisfy. Each of these requirements was used to help arrive towards our prototype platform
conclusion.

From these requirements we decided to move forward with Xbee 2 as the platform from which we
develop our smart lights. The Xbee 2 is capable of several types of network topologies which allow
for network scalability and flexibility for the number of devices during a PowerCyber simulation.
The Xbee 2 also features an implementation of Zigbee, which can allow low power wireless
communication. For now, the smart lights are broken up into singular nodes, and a coordinator
connected to a host PC is used to handle the inputs and outputs of the smart lights and interface
with the simulation.

(Figure 5: System diagram of IoT devices and host machine)

Coordinator

The Coordinator is responsible for receiving and sending information to the host simulation
consisting of status updates from the smart lights that would be triggered by an end user, as well as
the current status of the relay that any given smart light may represent during the simulation. This
Coordinator communicates with the host PC software via usb serial, and communicates with the
xbee 2 based nodes via the Zigbee wireless protocol.

16

(Figure 6: Coordinator)

Smart Lights

The smart lights work very similar to the coordinator, and are also based on the XBee 2 platform.
Each node, powered by a Digi Xbee 2, has access to micropython, a C based python implementation
that can run embedded code on the hardware. One key advantage from this is micropython access
to the neopixel library. Because of the need to represent the states of the relays via RGB lights, we
can take advantage of the neopixel library with ws2812b RGB lights (figure 7). Each light is
individually addressable and serialized, meaning that chaining rgb lights this way is much easier
than the previous implementation. In addition to this, we’re also aiming to improve the battery
charging circuitry. In its current state the charging circuitry offers charging only after the toggling
of an onboard switch, meaning that charging requires hardware teardown for PCB access, and gates
the user from using the node during this time. Using a sophisticated hardware design that allows
for concurrent usage is ideal, and several transistors as well as a TP4056 IC are able to be
implemented to satisfy this requirement. Addition of hardware buttons and a dial are also needed
for the end users to simulate a “hack” on the given relay, this requires a dial to select what type of
attack is to be simulated, as well as a button to actually trigger the update to the back-end server.

17

(Figure 7: Ws2812b RGB Light module)

Charging circuit

We will be designing our charging circuit using the TP4056 IC (figure 8). The IC will help both
charge the battery and indicate if battery charge is full. We will also implement an automatic
alternating design as shown in figure 8 using a not gate in order to alternate the power source
between battery and USB while the battery is charging.

(Figure 8: circuit diagram)

18

(Figure 9: charging circuit diagram)

Wireless Charging

In relation to the initial charging circuit we also discussed the addition of wireless charging, which
would simplify the charging using both an inductive charging station and the addition of an
inductive charging circuit on the smart lights. This would work on top of the previous circuit. The
largest issue here would be the voltage requirements needed by the microcontroller and the rest of
the devices. As it stands the battery requires 4.2 V to charge, which puts any 3.3V Inductive
charging set out of bounds. The next solution would be using a 5V circuit with a power step down
module. This addition was added later on in the design phase, which can pose some issues but
research will be done prior to the implementation to determine if this is feasible. This would
require some hardware added to the base of each smart light as well as a basic table fitted with the
correct inductive charging circuit and a power supply.

19

Graphical User Interface

(Figure 10: Smart Light GUI diagram

Our GUI will allow the user to configure the IoT light devices individually and connect them to the
simulation. The user will be able to place the light devices onto the node or object that they wish
the light to represent. The user can also toggle certain UI elements, such as the light names, to
clean up the view of the simulation from the application side. This GUI is not intended to be visible
to the audience of the presentation.

3.4 TECHNOLOGY CONSIDERATIONS

The proposed design will be able to simulate a running process in a different location using
multiple smart lights. The design still lacks the ability to run for longer than 8 hours, however with
adding the charging and using at the same time feature, we will be able to overcome this issue.
Some trade-off has to be made as the PCB is very limited in size as per the client’s requirements,
and therefore limited amount of features can be added. Such an issue will be overcome by getting
more creative with different ways to present data using only an LCD screen or multiple RGB lights.
The design will have the ability to perform two way communication which will allow us to add more
features.

20

3.5 DESIGN ANALYSIS

Thus far, most of our efforts have been focused towards planning, communication of different roles,
learning about how to interface the different parts of the system, and writing the associated
documentation and making the diagrams.

When looking at the previous work we decided to try to iterate on the design, as we agreed that
using a lot of the same core hardware would yield better results with some slight changes to the
design. As a team we agreed that some improvements could be made, especially with the previously
stated issues regarding the lack of two way communication between the IOT smart lights and the
coordinator. This requires additional buttons and a dial. Another aspect is more configurable rgb
lights for the xbee modules, through the usage of ws2812bs, which are a bright module that is
capable of 255^3 colors, a significant improvement from the static nature of the last version.

3.6 DEVELOPMENT PROCESS

Our team is following the Agile development process. We are using this process as our project needs
to always have more features added to it, and therefore we will be planning which features we will
be working on, work and collaborate on that feature till delivering it, and then back to considering
new features.

(Figure 11: Agile development process)

3.7 DESIGN PLAN

Describe a design plan with respect to use-cases within the context of requirements, modules in
your design (dependency/concurrency of modules through a module diagram, interfaces,
architectural overview), module constraints tied to requirements.

The final design will be composed of 3 modules: Zigbee Coordinator, individual light modules, and a
software user interface.

21

Functionally, the Zigbee Coordinator will assign each smart light to the relay it is representing. The
end user will be able to assign each node to a specific relay on the Power Cyber simulation and
interact with it during its lifecycle. Buttons on the Smart lights allow tactile user interaction during
the simulation and live feedback.

4 Testing
Testing is an extremely important component of most projects, whether it involves a circuit, a
process, or software.

The project will be divided into phases, such that each phase will have time to debug and catch any
large time consuming errors that could hold the team back. Because of the nature of IOT there may
be hardware design revisions. Getting some level of debugged hardware prototype functioning is the
first step for testing on all levels.

Each phase of testing will be depending on what modules of software are complete, as well as what
revision of hardware is currently functioning. This iterative process will allow changes to be made to
hardware to prevent lockups in the development process.

4.1 UNIT TESTING

Tests are broken down into units to emphasize modular testing, this way the team can debug stages
one level at a time to prevent confusion. This can allow software to be broken up for easy testing

Each module will be broken down and tested individually before combining into more complicated
sets. Between each unit test there will be interface tests to ensure that two quantities are
communicating correctly.

After a PCB Prototype has been fabricated, it is important to ensure that the printed and soldered
prototypes are matching the circuit diagram completely, this will require testing each connection
and component to the parts specifications and verify the design to the original specification.

4.1.1 SMART LIGHT MODULES

Each revision of the module will need the following verified:

The module can Integer data to the host regarding its updated state based on a button press. This
will send a packet to the server via zigbee. Testing is needed to ensure that ranges are clear and
packet loss is minimized.

The module can receive data from the host based on its changing state from the backend
simulation.

The module can correctly cycle through all the colors from each previous color. For example when
the module is currently red, it can then change the color to any other color.

In the early phases this will be done on a breadboard to make sure that hardware is both
functional as well as modular for rapid design changes. Testing the functionality will need to be

22

repeated for each iteration of the PCB. At this point an artificial system will need to be in place to
simulate the communication between the IOT smart light and the back end server.

Early stages of testing will involve this module as well as the Coordinator Module to test wireless
communication and scalability.

4.1.2 COORDINATOR MODULE

The broadcaster module designates the iot smart light modules to reflect the simulation that takes
place within the PowerCyber Lab. In order to prove that the module works when a signal is received,
a simulated signal will be sent to show that the backend updates based on the input. Ensuring that
the module can trigger changes in the backend is the foundation of the two way communication
needed for a successful deliverable. Simulated functions used to make it “appear” that a signal is
received or sent will be used to mock test this functionality.

This Module will be connected to a host PC, and will be sent information regarding the intended
status of the Smart Light Modules over serial communication, and will communicate updates
through the same interface back to the host PC.

4.2 INTERFACE TESTING

For each level of software development, testing protocol connections will ensure that
communication between the broadcaster and the endpoint avoids any regressions. This can be done
by effectively flooding the interface with packets to measure when the signal finally breaks down.

Testing will be done broken down into the following interfaces with each interface being predefined
and understood by both ends of development.

(Figure 12: embedded hardware connectivity)

23

4.3 OVERALL SYSTEM TESTING

When other testing has finished, and it has been determined that the hardware, interfaces, and the
software is functional, actual tests with the powerCyberLab will be needed to validate the overall
functionality of the system.

This will be done with a full setup of the entire system, including the software and hardware all
working together to reflect the specifications of the project. Each relay will be connected

4.4 ACCEPTANCE TESTING

The best way to ensure that the end product is to the specification of both our client and advisor,
both a functioning deliverable and demonstration are in order according to the requirements. This
would be both to clear up usability and to teach the client how to use the system. This will also
ensure that non-functional requirements are clearly completed to the clients satisfaction.

4.5 RESULTS

As we are still in the planning and design phase of the project we have not yet constructed any
hardware components, nor built any software. We will have more results to show in the second
semester of senior design.

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

Currently our team is prototyping basic breadboard circuits with mixed success. We’re currently
working on a prototype of the Iot smart light on breadboards but running into some hardware
issues when it comes to actually writing to the devices.

As it stands the actual hardware that we have is the xbee models that aren’t fitted with
microcontrollers, for the time being the prototype is working with an arduino as the controller
while we wait for hardware to arrive. This makes the configuration a bit more complicated because
it requires more modules to implement but also works as a proof of concept.

24

(Figure 10: Software flow diagram. Each blue rectangle represents a page in the python application.)

6 Closing Material

6.1 CONCLUSION

In conclusion, our goal this semester is to create an Internet of Things (IoT) solution for the Power
Cyber lab to solve the problem of inadequate presentation capabilities. We would like to use
wireless, mountable IoT light devices. communicating using the ZigBee protocol, to represent the
status of relays within the power grid simulations being run in the Power Cyber lab. The IoT lights
will be configured and controlled by a python program running on a host computer.

We have chosen this solution over other possible solutions because of several factors. The first is
that using mountable, wireless devices provides us with greater flexibility over wired devices. The
wires would also get in the way of any presentations that the devices would be used for, thus
reducing their effectiveness. The second is that our solution must be scalable, up to 100 devices, and
managing that many cables would take up a lot of space and lead to unnecessary complexity. The
wireless communication protocol we have chosen, ZigBee, is advertised as a low-power protocol,
thus battery life can be extended. Lastly, we plan on implementing two-way communication
between the IoT light devices and the power grid simulations so that users can interact with said
simulations during a presentation, and demonstrate certain effects if desired.

25

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

[1] Augustin, Aloÿs, et al. “A Study of LoRa: Long Range & Low Power Networks for the Internet of
Things.” Sensors, vol. 16, no. 9, 9 Sept. 2016, doi:10.3390/s16091466.

[2]Digi, Setup Devices, 2018, [Online]. Available:
https://www.digi.com/resources/documentation/digidocs/90001526/Default.htm#containe
rs/cont_setup_devices.htm%3FTocPath%3DSet%2520up%2520%2520your%2520XBee%2520
devices%7C_____0

[3]“LoRa Specification.” LoRa Alliance Resource, Nov. 2020,
lora-alliance.org/wp-content/uploads/2020/11/lorawantm_specification_-v1.1.pdf.

[4]“What Is Z-Wave Long Range and How Does It Differ from Z-Wave? - Z-Wave Alliance.” Z, 17 Dec.
2020, z-wavealliance.org/what-is-z-wave-long-range-and-how-does-it-differ-from-z-wave/.

[5] XBEE® AND XBEE-PRO® ZIGBEE, Digi, 2016, [Online]. Available:
https://cdn-shop.adafruit.com/product-files/967/p967b+datasheet.pdf

[6] XBee®/XBee-PRO S2C Zigbee®, Digi, January 2020, [Online]. Available:
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

[7]“Zigbee.” Zigbee Alliance, 9 Dec. 2019, zigbeealliance.org/solution/zigbee/

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem but
helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

For high resolution Gantt charts.pdf file, please visit
https://drive.google.com/file/d/1k6aQkD4UcFIDgFBK1CtHrsNlCSI92nlV/view?usp=sharing

26

https://www.digi.com/resources/documentation/digidocs/90001526/Default.htm#containers/cont_setup_devices.htm%3FTocPath%3DSet%2520up%2520%2520your%2520XBee%2520devices%7C_____0
https://www.digi.com/resources/documentation/digidocs/90001526/Default.htm#containers/cont_setup_devices.htm%3FTocPath%3DSet%2520up%2520%2520your%2520XBee%2520devices%7C_____0
https://www.digi.com/resources/documentation/digidocs/90001526/Default.htm#containers/cont_setup_devices.htm%3FTocPath%3DSet%2520up%2520%2520your%2520XBee%2520devices%7C_____0
https://cdn-shop.adafruit.com/product-files/967/p967b+d
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf
https://drive.google.com/file/d/1k6aQkD4UcFIDgFBK1CtHrsNlCSI92nlV/view?usp=sharing

